太赫兹元器件
随着太赫兹技术的快速发展, 各国研究人员对太赫兹元器件开展了大量研究, 包括太赫兹无源元件, 如太赫兹滤波器、太赫兹天线、太赫兹耦合器, 以及太赫兹有源器件, 如太赫兹变频器、太赫兹倍频器等.
1太赫兹滤波器
太赫兹频段具有极宽的可用物理带宽. 在不同应用场合, 需要使用滤波器等无源结构对太赫兹的频率进行选择. 目前报道的太赫兹滤波器有频率选择表面(FSS)、微机电系统(MEMS) 滤波器、波导腔体滤波器、MMIC 滤波器、CMOS 和SiGe 滤波器等. 另外, 还有一些太赫兹滤波器是基于二维光子晶体、超材料、表面等离子体等结构.
a) FSS 空间滤波器在低频段的研究己经相当成熟, 而关于太赫兹频段FSS 的研究并不多,只有很少的报道. 设计FSS 的主要方法有多谐振单元、多层结构方法、微扰法和基因算法等. 频率选择表面采用周期性结构来实现频率选择,已广泛应用于微波毫米波和准光系统. b) 基于MEMS 的太赫兹腔体滤波器 与波导腔体滤波器相似,均采用腔体结构来实现, 前者使用体硅蚀刻工艺在硅上刻蚀滤波器图形, 然后在硅表面溅射金等实现波导腔体特性, 而后者直接在金属上使用高精密数控机械加工技术铣出滤波器图形。为了避免昂贵且困难的深硅刻蚀, 利用MEMS 的高加工精度可以在硅衬底表面刻蚀出周期性沟槽结构, 从而可以实现高选择特性的太赫兹低通滤波器。
c) 光子晶体太赫兹滤波器是在光子晶体结构中通过引入缺陷实现太赫兹滤波器。
d) 激光照射量子阱结构可以使电子与空穴相结合产生光子, 而改变载流子浓度可以改变等离子的频率, 所以量子阱结构的光学特性可以被入射激光控制, 进而设计出基于量子阱结构的太赫兹滤波器。
e) 太赫兹波长较短, 因此有可能基于传统的平面微波毫米波电路结构, 使用MMIC、CMOS、SiGe 等微纳加工工艺实现太赫兹滤波器等无源结构的设计. 目前这方面的研究已有少量报道。
2 、太赫兹天线
随着对太赫兹技术研究的深入, 太赫兹天线也逐渐成为研究热点. 太赫兹频段相比微波毫米波频段有着更高的工作频率, 对应的波长也短很多. 由于天线尺寸与波长的相关性, 太赫兹天线具有尺寸小的天然优势, 但也对加工制作带来了挑战. 类似于低频段通信的天线需求, 太赫兹天线也分全向天线、定向天线以及多波束天线阵等.
常见太赫兹天线包括:
a) 太赫兹喇叭天线具有定向波束特性, 天线增益高, 得到了广泛的研究和应用。 由于在太赫兹频段, 天线尺寸非常小, 对加工精度要求极高,目前英国卢瑟福实验室制作的圆锥喇叭天线已可工作到2.5 THz。
b) 太赫兹反射面天线具有高增益、低旁瓣、窄波束等优点, 也是一种太赫兹技术中经常采用的天线形式, 包括单反射面天线和双反射面天线,一般广泛应用于射电天文望远镜.
c) 太赫兹透镜天线采用介质透镜, 具有高增益、低副瓣等特性. 由于集成度较高且可形成透镜阵列, 它对太赫兹成像技术的发展起到了重要的推动作用.
d) 太赫兹平面天线结构简单, 容易与其他电路集成, 且加工较容易、成本较低, 是一种受到欢迎的结构形式.
e) 光电导天线作为产生宽带太赫兹波的一个主要方法, 在太赫兹领域得到了广泛的研究. 它的作用是有效地产生大功率、高能量、高效率的太赫兹波, 其发展趋势是继续提高产生太赫兹波的功率和效率. 另外, 一些新型材料在太赫兹天线的设计中也受到了关注, 如碳纳米管双极子天线和片上太赫兹3D 天线等.
3 太赫兹混频器
在超外差太赫兹系统中, 混频器是一个核心器件, 其功能是将太赫兹信号向下搬移到微波毫米波频段, 从而实现对信号的采集、分析及处理, 对太赫兹通信、太赫兹成像、大气监测等领域具有重要影响。 目前可以在太赫兹频段容易实现的混频管有超导体{ 绝缘体{ 超导体(SIS) 混频管、热电子测辐射热计混频管以及肖特基二极管. 前两者对工作环境的温度要求较高, 需要低温环境, 而肖特基二极管却没有这个限制. 超导隧道结混频器由具有近似理想开关特性的超导隧道结构成. 因此它可以提供较高的变频效率和一定的变频增益, 同时它仅需要较小的本振功率, 因此噪声较低。常用的Nb 隧道结在700 GHz 以下具有较好的性能, 如果配合高能隙超导材料NbN 以及NbTiN 等,可以将工作频率拓展到12 THz。目前超导隧道结混频器的研究逐步由单元设计向多像元发展, 特别是大规模多像元集成化接收机设计. 近年来, 国内外研究人员对太赫兹混频器开展了大量的研究工作。
4 太赫兹倍频器
与太赫兹混频器类似, 太赫兹倍频器也是太赫兹系统的一个核心器件. 通过倍频器, 不仅可以由低频率的微波毫米波信号产生高频率的太赫兹信号, 也能在一定程度上提高太赫兹信号的频率稳定度和信号质量. 主要原理是利用非线性器件, 产生两倍或者多倍的输出信号, 从而实现信号频率倍增的功能, 是目前获取高频率太赫兹信号源的一个重要手段。由于在太赫兹频段,半导体器件的寄生参数对电路性能的影响较大, 所以需要对其进行仔细的分析与建模, 进而完成倍频器的设计。